

# Genetics of Penstemon pachyphyllus

Rachael Rosen<sup>1</sup>, Katherine Kucera<sup>2</sup>, Emily Orr<sup>3</sup>, Sacramento Herrera<sup>4</sup>, and Andrea Kramer, PhD<sup>2,5</sup> <sup>1</sup>Rochelle Zell Jewish High School, <sup>2</sup>Northwestern University, <sup>3</sup>University of Missouri - Kansas City, <sup>4</sup>Nicholas Senn High School, <sup>5</sup>Chicago Botanic Garden

#### Introduction

Primers were created for the Penstemon genus species by Dockter et al. 2013, and tested on species: P. cyananathus, P. davidsonii, P. dissectus, and P. fruticosus. Penstemon pachyphyllus was confirmed with some of these primers, and untested with others. Our research included running both the confirmed and untested primers on the *P. pachyphyllus* species.

Primer testing provides insight on the genetics of *Penstemon* species, including P. pachyphyllus. New information on P. *pachyphyllus* can be used for further conservation efforts.

#### Results

The Universal PCR program showed that seven confirmed *P*. pachyphyllus and three untested P. pachyphyllus primers amplified the DNA.

| Confirmed<br>pachyphyllus | Move to Gradient ( $\checkmark \Box$ )<br><u>Or</u><br>reason to discontinue | Untested<br>pachyphyllus            | Move to Gradient<br>(✔□) <u>or</u>      |
|---------------------------|------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------|
| PS004                     | gel 1/2 didn't work,<br>1 band too high                                      | PS003                               | reason to discontinue<br>smear and high |
| PS012                     |                                                                              | PS005                               |                                         |
| PS014                     |                                                                              | PS021                               | bands too low                           |
| PS017                     |                                                                              | PS023                               | bands too low                           |
| PS025                     | too many (high) hands                                                        | PS040                               |                                         |
| PS032                     | 2 bands but did not run                                                      | PS054                               |                                         |
| PS034                     |                                                                              | PS056                               | no bands ever                           |
| PS035                     |                                                                              | PS069                               | too high                                |
| PS048                     |                                                                              |                                     |                                         |
| PS075                     |                                                                              |                                     |                                         |
| PS052                     | too many (high) bands                                                        |                                     |                                         |
| PS053                     | barely anything to see                                                       | PS021 PS023 PS040 PS054 PS056 PS069 |                                         |

# Objectives

- Run confirmed and untested primers on *P. pachyphyllus* \*\*
- Identify heterozygous primers that amplify with *P. pachyphyllus* using the Universal PCR program
- Find the best annealing temperature(s) for each primer that \*\* amplifies P. pachyphyllus (48-59°C) using the Gradient PCR program





**PS012** - two band regions with seperate best annealing temperatures, same amplification range  $(53-59^{\circ}C)$ **PS014** - band size between 400 and 500, best annealing temperature at 51-52°C

**PS017** - better annealing at lower temperatures, best annealing temperature 50°C, higher temperatures did not amplify at all **PS075** - higher temperatures did not amplify at all, band size ~200 **PS005** - discontinuity in temperatures amplified; best annealing temperatures  $51^{\circ}$ C,  $53-55^{\circ}$ C; thick bands bands may split apart in Beckman

DNA was systematically placed into a PCR plate and run with the confirmed and untested primers (over multiple plates) on the Universal program. The Universal program can be applied to any primer, and provides general insight as to whether the primer can amplify. Universal is not ideal for obtaining specific results, considering the low temperature  $(45^{\circ}C)$  are prone to causing smearing. The PCR products were transferred to a gel and run in an electrophoresis box at recorded intervals, to produce bands. The confirmed and untested primers that appeared heterozygous (2 bands) and/or amplified well were selected for retesting on the Gradient program. The Gradient program runs primers at 12 temperatures (48-59°C) each. The product of the same primer at different intervals reveals best annealing temperature. All primers tested on this second set were run with the same DNA sample (RBS-1).

The Gradient program can give more specific amplification temperatures, band size range, and best annealing temperatures of primers than the Universal program. With these more definitive results, P. pachyphyllus can be tested against previous genetic DNA data of the other four (previously mentioned) *Penstemon* species. Having comparable information can provide insight to the *Penstemon* genus as a whole, allowing for broader conservation efforts.

I would like to thank Jeremie Fant, PhD, and Hilary Noble (Coordinator of Research Labs and Undergraduate Research), for all their generous help in the laboratory. Special thanks to Andrea Kramer, PhD, for supervising this project.



## Methods

## Conclusion

