Variability of Pollinator Specialization Over Time Assessing the impact of floral typology on pollinator specialization Ruby Barron¹

1 - University of Michigan, Ann Arbor

Introduction

We analyzed pollinator specialization in a home garden between April and October 2020 as the floral community shifted using bipartite network analysis (BNA). BNA is a key tool in understanding the function of each species in a network. However the incorporation of change over time in BNA is recent and needs further development²—despite different flowers having very different phenologies. In particular, we extended Corbet's, and Ellis & Ellis-Adams' flower and insect typologies to analyze whether the availability of preferred food sources impacted specialization and niche overlap.^{3,4} This work provides valuable insight to restoration efforts which seek to maximize pollinator biodiversity and minimize planting expenses.

- Specialization will positively correlate to abundance of wellsuited plants
- Niche overlap will be lower than predicted by a null model

Is this a Pollination Syndrome?

Not quite! Pollination Syndromes presume a coevolutionary history which has not been proven. Corbet's analysis divides plants and pollinators into 3 functional categories based on observed interactions:

Allophilous Plants small flowers, accessible nectar Hemiphilous Plants partially concealed nectar **Euphilous Plants** fully concealed nectar, often bell-shaped

What are Null Models?

Null models provide a baseline for comparison by creating a randomly structured network with the same size and number of interactions as the observed network. This baseline can be used to establish whether a network feature is the product of an ecological process or simply a product of sampling effort.

Works Cited

- 1 Vázquez, D. P., et al., N. P. Uniting pattern and process in plant–animal mutualistic networks: a review. Annals of Botany 103, 1445–1457 (2009).
- 2 e.g. novel work like Bramon Mora, B.,et al., Untangling the seasonal dynamics of plant pollinator communities. Nat Commun 11, 4086 (2020).
- 3 Ellis, W. N. & Ellis-Adam, A. C. To make a meadow it takes a clover and a bee: the entomophilous flora of N.W. Europe and its insects. BTD 63,193–220 (1993).
- 4 Corbet, S. A Typology of Pollination Systems: Implications for Crop management and the *Conservation of Wild Plants (2007)*
- 5 Dormann, C. F. Using bipartite to describe and plot two-mode networks in R. 28.

Acknowledgements

We thank Kay Havens for providing data, Jeremie Fant for guidance, Paul CarraDonna for advice, the Chicago Botanic Garden for the opportunity to perform this project, and NSF-REU grant DBI-DBI-1757800 for support.

(NO) computed from 500 null models (green) and observed value (orange) for June 9th. For all null models, z-scores > 3 strongly suggest observed NO not random.

able 1: Relative abundance of each flower type on each observation day																	
	7 May	29 May	31 May	9 June	15 June	30 June	11 July	13 July	21 July	30 July	13 Aug.	29 Aug.	4 Sep.	16 Sep.	21 Sep.	7 Oct.	13 Oct.
Allophilous	0.048	0.99	0.67	0.68	0.43	0.53	0.81	0.63	0.57	0.69	0.71	0.41	0.30	0.0	0.52	0.25	0.5
Hemiphilous	0.0	0.0010	0.33	0.32	0.52	0.47	0.047	0.0	0.0	0.0	0.062	0.037	0.091	0.0	0.065	0.0	0.0
Euphilous	0.95	0.0	0.0	0.0	0.043	0.0	0.14	0.38	0.43	0.31	0.22	0.55	0.61	1.0	0.42	0.75	0.5

Table 1: Relative abundance of each flower type on each observation day																	
	7 May	29 May	31 May	9 June	15 June	30 June	11 July	13 July	21 July	30 July	13 Aug.	29 Aug.	4 Sep.	16 Sep.	21 Sep.	7 Oct.	13 Oct.
Allophilous	0.048	0.99	0.67	0.68	0.43	0.53	0.81	0.63	0.57	0.69	0.71	0.41	0.30	0.0	0.52	0.25	0.5
Hemiphilous	0.0	0.0010	0.33	0.32	0.52	0.47	0.047	0.0	0.0	0.0	0.062	0.037	0.091	0.0	0.065	0.0	0.0
Euphilous	0.95	0.0	0.0	0.0	0.043	0.0	0.14	0.38	0.43	0.31	0.22	0.55	0.61	1.0	0.42	0.75	0.5

Restoration Considerations

Confounding Factors

• Restoration plantings should include a range of flower typologies throughout the year

• Most days, most pollinators were only observed on one flower leading to very skewed PDI Values